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In the classical deformable-continuum model developed by Cauchy the strain is completely determined by the vector 
field of  displacements, and the stress state by the tensor field of stresses. Although re:d media have a discrete structure, 
the classical model very successfully describes the stress and strain distribution in sufficiently smooth domains under 
sufficiently steady loading. However, this model suffers a loss of precision when the conditions of smoothness of the 
domains break down and the load gradients increase. The discreteness of  the structure of real media becomes significant 
in such situations. Consistency with experiment can be regained at the cost of a departure from the classical continuum 
model and its replacement with other models that comply more nearly 'with experiment. Clearly, the most universal model 
is the model of a medium as a discrete system of particles bound by definite interaction forces. A simpler approach is to 
modify the classical model in such a way as to preserve the hypothesis of continuity of  the medium while imparting to it 
smooth special properties of a discrete-structured medium. The most highly developed model of  a deformable medium to 
date is the model originally formulated by the brothers Cosserat, namely a medium subjected to couple stresses. The 
Cosserat continuum is a medium whose strain is determined by kinematically independent vector fields of  displacements 
and rotations and whose stress state is determined by tensor fields of internal forces and couples. The most complete formu- 
lation of the equations corresponding to this model is clearly attributable to Toupin [ 1 ]. 

In this article we propose a modified version of the nonlinear equations formulated in [1 ] for a thermomechanical 
couple-stress continuum. The modification is made by introducing a vector field of  finite rotations, which greatly simplifies 
the nonlinear formulation of  the kinematic equations and brings it ultimately close to the hnear formulation. For the 
formulated system of nonlinear equations we indicate kinematic and dynamic relations that result in simpler nonhnear models 
of deformable media. 

A domain of  three-dimensional Euclidian space occupied by a continuum at the initial time is parametrized by the 
Lagrangian coordinates t N (upper-case Latin subscripts take the values 1, 2, 3). 

Let (t) -~ (tl, t~, t~) be an arbitrary material point of  the continuum, a(t) its initial radius vector relative to a fixed 
(reference) point in space, V~v the partial differentiation operator with respect to the variable t N , A(:v~(t)~V~.a an initial 
coordinate basis defined at point (t), A (.a~.) (t) ~ Aoi~. Arm the metric tensor of  the initial basis, D(LMN~ (t) ~ A(L)" (A(m • 
• A(n)) the discriminant tensor of  the initial basis, and V(mthe covariant differentiation operator with respect to the 
variable t s in the initial basis. 

At the initial time the continuum is subjected to mechanical and (or) thermal effects, which induce strain-accompanied 
motion of its material points. The closed system of equations describing the motion of the continuum comprises the kine- 
matic, dynamic, and constructive equations. 

1. The Lagrangian description of  the strain-accompanied motion of  the continuum reduces the problem to a 
continuous sufficiently smooth transformation of  the coordinate basis. 

Let t o denote the time variable, a o (to, t) the instantaneous radius of the material point (t) relative to the reference 

point in space, A4N~ ( to ,  t )  = viva0 the instantaneous coordinate basis, and V0 the differentiation operator with respect to 
the parameter t o . 

According to the concept of  the couple-stress continuum, a displacement-independent local rotation of the basis is 
admitted in the transformation of the initial to the instantaneous basis. Consequently, for the mathematical description of  
such a transformation it is appropriate to invoke the notion of  Biot concerning the segregation of  a rigid rotation apart 
from the general transformation of  basis [2]. This notion has been realized in the formulation of  the second-order theory 
of  a classical (couple-free) elastic continuum. 

The generalization of Biot's notion to a couple-stress continuum permits the transformation of the initial to the 
instantaneous basis to be represented by the superposition of  two independent successive transformations: 1) a local rigid 
rotation, taking the initial basis into a certain (rotated) basis A[NI(t o, t); 2) transformation of  the rotated basis into the 
instantaneous basis. 
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The local rigid rotation of the basis is characterized by the angle of  rotation ~(t0, t)about the instantaneous local 
axis. It is more practical, however, to characterize it by a local rotation vector V(t o, t), which is directed along this axis 
and has length 

[ V t = 2 1 t g ( t t ~  ) ' , 2  

The rigid-rotation transformation of  the basis is expressed in terms of  the rotation vector by the mutually inverse Rodrigues 
formulas [ 3 ] 

t ' , I 
Arm = A~.~) + -7- (,A(,~,~ ~ -y- V x A(z~)), 

(1.1) 
t (  t ) t V . V .  - -  - g - V  = A(zv) = A~2vl --]- Arm --  • A~-] , [ I -~ 

The metric and discriminant tensors are invariant under rigid rotation, so that 

A[M]'A[N] = A(31h,), A[,~t] X A[N] = D(LMN)A TM �9 

As a result, the subscript "juggling" operation in the rotated basis is realized by means of  the initial metric tensor. 

The solution of  either of  the equations (1.1) for the rotation vector yields the equation 

I /A(,~,) V = ~ x At, m, 

(1.2) 

which describes the rotation vector in terms of  the rotated basis. A consequence is the set of equalities 

V. A~. 1 = V. A(.,~), 

which states that the components of  the rotation vector coincide in the initial and rotated bases. 

The field of  finite rotations formed by the vector function V(t o , t), preserving the space metric, can only impart 
curvatures to lines and surfaces immersed in the given space (in particular, the coordinate lines and surfaces). A measure 
of curvature is afforded by the vectors V(L)A[m. However, there is a simpler measure, which is expressed in terms of  these 
vectors. Thus, covariant differentiation of  the scalar product (1.2) yields the equation 

Ago'l" V(I~) Apq ----- _.A[~]. V(~c)A[~I, 

which implies the representation 

(1.3) V(~.)A[MI = V(~.) X ADI ] . 

The vectors V(K)(t0, t) introduced in this way define a simpler and more natural measure of  curvature and are therefore 

logically referred to as the curvature-strain vectors of  the continuum. 

The inversion of  Eq. (1.3) yields the equation 

t A~t] • V(K)A[MI, (1.4) V(~  = '-2-" 

which expresses the curvature-strain vectors in terms of  the vectors v(mA~MI. Equations (1.1) can be used to derive from 
(1.4) the following expression for the curvature-strain vectors in terms of  the rotation vector: 

" ~ (  i v  ' $(~) = 7 ,V~V + 2 • VKV). (1.5) 

The curvature-strain vectors have tensor components and form a tensor field of  nonlinear curvature-strains of  the 
continuum. 

The transformation of  the rotated into the instantaneous basis generates vectors U(K)(t 0 , t), which are defined by 
the equation [U(t o, t) is the displacement vector] 

U(m--~ A~ m --  Arm= v~U + A(m --  X~] (1.6) 

and afford a measure of the strain-induced variation o f  the metric tensor of  the given space. These vectors are appropriately 
called the metric-strain vectors of  the continuum. 
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Substituting expressions (1.1) into (1.6), we obtain the equivalent equations 

I V•  ) U(K) = VKU ~ - 7 -  2 X A(K) = 

t V X ('A~K] t =-  - -5- V x A~K~ ), = VK U -  f 
1 

(1.7) 

which expresses the metric-strain vectors in terms of  the displacement and rotation vectors. 

The metric-strain vectors have tensor components and form a tensor field of  nonlinear metric-strains of  the 
continuum. 

The inverses of  Eqs. (1.5) and (1.6) 

V K V = V ( r )  , 2 V~K) x V + - - ~ ( ~ / ~ r ) . V ) V ,  

v~U = U(m + Ac.~ l - -  A (~:) 

can be regarded as the system of  equations describing the rotation and displacement vectors in terms of  the strain vectors 
(tensors). The conditions for integrability (compatibil i ty) of  this system 

D(tCLM) V(/~') VLV ~--- 0, D(~L-~r) V(m Vz U -~ 0 

are reduced by (1.3) to the equations 

, ) D (KLM) (V(K)V(I,) - -  -~- V(K) X V(L) = 0, 
\ 

D (KLM) (V(K)U(L) ,4- V(K) X A-ILl) --  0, 
(1 .8)  

which have the significance of  continuity conditions for the deformable medium. 

To complete the formulation of the kinematic equations we have only to determine the rates of time variation of 
the kinematic vectors defined above. 

Inasmuch as the motion of  the rotated basis is spherical, it can be represented in terms of  the angular velocity 
vector V o(to, t) by the equation 

VoAp~s] = No • Apq .  (1.9) 

From this result we deduce the equation 

t A[MI V0 = -5- "- X VoA~M ], (1.10) 

which enables us, like the analogous Eq. (1.4), to express the angular velocity of  the basis in terms of the rotat ion vector 
(see also [ 3 ]): 

Vo = V0V + - ~ V  X V0 v . (1.11) 

The explicit analogy between expressions (1.3)-(1.5) and (1.9)-(1:11) provides a means for verifying, first the 
equivalence of  the time differentiation and covafiant coordinate differentiation operations (and, hence, the commutativity 
of  the operators Vo and V(L) ) and, second, the mechanical significance of  the curvature-strain tensor as the tensor of  

angular velocities of  rigid rotation of the basis, corresponding to infinitesimal rotations of  the coordinates at a fixed time. 

Time differentiation of  Eq. (1.4) with the use of (1.9) yields the equation 

VoV(L) = VL V0 + V0 X V(L; , (1.12) 

which describes the time rates of  change of  the curvature-strain vectors. 

The time rates of  change of  the metric-strain vectors are similarly determined from Eq. (1.6): 

VoU(L) = VLUo - -  Vo X A[L] �9 

The vector U o (t o, t), defined by the relation 

has the significance 

Uo = VoU, 

of  the linear velocity vector of the basis. 

(1.13) 
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2. To derive the dynamical equations for a thermomechanical couple-stress continuum we define on the instantaneous 
coordinate surfaces the vectors X(M)(to , t) of  force-stresses and vectors Y(M)(t o, t) of  couple-stresses, all computed per unit 
initial area. 

In addition, let F(t0, t), G(t0, t) be the vectors of external body forces and couples per unit initial volume, H 0 (to, t) 

the rate o f  heat input to unit initial volume, p(t) the initial density of  the continuum, and R(t) the tensor of  local moments 
of inertia (which by defmition does not depend on the time and is a measure, averaged over ~mitial unit volume, of  the 
inertia of  structural particles of  the medium when they execute rotational motion as rind bodies about the local axes). 

At the initial time we isolate in the continuum an arbitrary spatial domain A with a smooth surface B, on which we 
define the field of  unit normal vectors 

N(t) = N(m (t)A(m. 

At any instant the given domain is acted upon by surface and body forces. The principal vectors of  surface forces 
and couples acting externally on the given domain through a surface element d~3 are equal to, respectively, X(M)N(M)d~ 
and Y(M)N(M) d~. The principal vectors of  body forces and couples acting on a volume element do~ are made up of  the 
vectors Fda, Gda of  external forces and couples and the vectors PVoU0da, R. VoV0dc~ of  inertial forces and couples. 

The motion of  the given domain of  the continuum is described by the following dynamic integral equations for the 
variation of  the linear and angular momenta (relative to the reference point in space): 

B A A 

.f iao X X (3t) -i- y,3I)) 2V(M)d ~ ~_ f (a 0 X F @ G ) d ~  = .t' (Pflo X V0C 0 @ R .VoVo) d~.  
B A A 

For sufficient smoothness of  the given functions the transformations of the surface integrals according to the Gauss -  
Ostrogradskii formula yields the local equations of motion of  the couple-stress continuum: 

V(~ai)X(~)+ F = 9VoUo, V(M)Y(M) + A~M} .'-< X (~I) ~- G = R.VoVo. (2.1) 

If  U(to, t) is the internal energy density of  the continuum per unit initial volume, then for the given domain the 
first law of  thermodynamics must hold, formulated by the integral equation 

S('  ' S Vo T pU~ 'U~ 7 ,  Vo.R'V o L ' ) a a =  (F.U ow- 
.t ' ~ (2.2) 

Vo + n0) (x Co : Vo) 
/3 

From this result, as a result of  transformation of  the surface integral according to the Gauss-Ostrogradskii formula and 
application of  Eqs. (2.1), we obtain the local energy equation 

(2.3) 

If the domain occupied by the continuum is bounded and either the displacement and rotation vectors or the vectors 
P, Q of  external surface forces and couples are specified at its boundary, then the necessary and sufficient condition for 
satisfaction of  the integral equation (2.2) in the entire domain subject to the additional local constraint (2.3) is satisfaction 
of  Eqs. (2.1) in the interior of  the domain and of  the following equations (boundary conditions) on the boundary surface: 

(X(M)N(M) --  P)'U0 = 0, (Y<M)NrM) --  Q).V0 = 0. (2.4) 

3. For the scalar representation of  the formulated kinematic and dynamic 
and force vectors with respect to both the initial and the rotated bases: 

U = U(N)A (~') = U[N]A[N], V = V(N)A (~v) = VEN]A [~~ (V~-~ ~--- V(N) ), 

U ( M ) =  U(MN)A (N) = U(MNI A[~] ,  V(M ) = V(MN)A(N) =V(MIg]A ~N], 

X (M) = X (MN) A(N) ~ X(MNIAfN], y(31) = Ir(MN)A(N) =y(MXJAEN]. 

Here the transition from either of thesebases to the other is realized by means of  Eqs. (1.1) written in the form 

equations we can expand the kinematic 

(3.1) 
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AiM ] = (A(MN) -~- W(MN))A (N), A(.~I) = (A(ze~i) -~-W(NM))A[-~'], 

I n TZ(L) (M.~) (L) /. W(~N) = -7-'-'(LM~)" + ~T (V(~,~v(~,) - A V V <~)~ 

Equations (1.12) and (1.13) enable us to establish the relations 

VMVo = voV(MN] A~NI, . vMUo - -Vo  • A{~I) = VoU(MNIAIN~ 

(3.2) 

(3.3) 

which can be used to transform Eq. (2.3) to the form 

v o U =  X(MN] VoU(MN! + Y(MN]VoV(MN] + Ho~ (3.4) 

showing that the components of  the force and strain tensors in the rotated basis are, respectively, generalized internal forces 
and generalized displacements. The components of  these tensors in the initial basis are not so identified. 

To close the formulated system of kinematic and dynamic equations it is necessary to invoke the constitutive equa- 
tions for the couple-stress continuum. The problem of formulating these equations cannot be solved in a general setting. 
It requires particularization on the basis of  experimental work. In particular, for the couple-stress continuum, as for the 
couple-free continuum, we can identify a class of  invertible deformation processes [4]. If  we confine the discussion strictly 
to such processes, then for the formulation o f  the constitutive equations it is sufficient to specify either the internal energy 
density U as a function of  both strain tensors and the entropy density S: 

U = U(U(M~K, V(Mm, S),: 

Or the free-energy density V as a function of  the same tensors and the absolute temperature T: 

V ~ U -  TS = V(U(MN], V(M~V T). 

In this case the state parameters S and T are interrelated by the second law of thermodynamics: 

Ho = TVoS. (3.5) 

As a result of  time differentiation of  each of  the functions U, V and comparison with Eqs. (3.4) and (3.5), we 
obtain the differential equations 

OU 
OU(MN] VoU(MlV] + - -  

or" VoU(~m -~ 
OU(MN] 

OU , OU v ( M N ]  v7 r r  f 
V o V ( M N ]  -i-  ~ V 0 S  ~ A vo ( J  (MN ] + Y(MN]VoV(M:'q 7- TVoS, 

OV(MN] 

OV oV VOV(Mx ] + ..~_. V0T = x(MlV]vou(~fNI + y(MNIVoVo~N l _ SVoT ' 
OV(MN] 

from which we deduce equivalent formulations of  the constitutive equations and heat-input equations: 

x(M2r OU , y (MN]  aU OU 
OU(MN] OV(M.N], Ho = -~-VoS; (3.6) 

v x ( M N  ] __ OV , y (MN]_ OV , Ho = --  TV6 - -~ .  
- -  OU(MN] OV(MN] 

The first formulation is preferable for adiabatic, and the second for isothermal deformation processes. 

4. The kinematic constraints 

(3.7) 

U(M)" A[N] ~-  U(N). AIM], (4. I) 

which guarantee symmetry of  the metric-strain tensors, yield the Cosserat continuum ("pseudocontinuum") model [1, 4, 5]. 
This continuum has the same kinematics as the classical continuum, since Eqs. (4.1) describe the rotation vector of  a 
material point of  the continuum in terms of  its displacement vector in exactly the same way as for the classical model. 
Only the presence of  couple-stresses distinguishes the Cosserat pseudocontinuum from the classical model. The number of 
independent boundary conditions is reduced to five in the pseudocontinuum model [5]. 

Augmenting the constraints (4.1) with the dynamic constraints 

y(M). A[N] ____. 0 , 

s3o 



we obtain a nonlinear model of a couple-free continuum in a formulation unrestricted by the condition of smallness of the 
local rotations and thereby generalizing the formulation of Biot [2]. 

Thus, the proposed technique for the construction of nonlinear models of deformable media provides a unified 
kinematic foundation for couple-stress and couple-free media in an ultimately simple (vector) representation. 
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ASYMPTOTIC BEHAVIOR OF BOUNDARY-VALUE PROBLEMS 

FOR AN ELASTIC RING REINFORCED WITH VERY RIGID 

FIBERS 

Yu. A. Bogan UDC 539.3 

The following boundary-value problems are investigated for an elastic ring reinforced with very rigid fibers arranged 
in concentric circles: a) The stresses are given at the boundary; b) the bending deflection and angle of rotation are given 
at the boundary. The generalized Hooke's law [ 1] is adopted as the initial governing equations; as a consequence, the final 
results are valid for standard models of a composition elastic model [2, 3]. 

We formulate asymptotic representations of the solutions of boundary-value problems a) and b) on the assumption 
that the rigidity of the material in the circumferential direction is much greater than the shear rigidity. 

We show that a boundary layer sets in along the boundary; in case a) the boundary conditions for the limiting 
boundary-vaiue problem do not coincide with any of the boundary conditions for the sublimiting problem. Problem b) 
degenerates into the limiting problem in a regular manner. 

1. Let us consider problem a). We assume that the elastic ring is cylindrically orthotropic, and we apply the 
generalized Hooke's taw in the form [(r, 0) denotes polar coordinates] 

gr = CllEr ~ C12E0, G0 = C128r ~ C2280 ," ~r0 = C66~r0 �9 

We introduce the dimensionless stresses and rigidities, setting 

~, = ~ m - L  ~0 = ~0c;) ,  7,0 = ~,0c0; 1, d~j = c~m-L i, ] = i ,  2, 

and in all that follows we retain the same notation as before for the dimensionless stresses. Let d2= >> 1 ; in real situations 
this relation holds for an elastic ring reinforced with one very rigid set of fibers r = const. We put e ~ d -~ ~ 2 ,  d = d51, 

c = d~2 + 2d~, t = In r . Then the equation for the stress function w(t, 0) can be written in the form 

e~N(w) + M(w) ----- 0 (1.1) 

on the assumption that mass forces are absent. In (1.1) 

03w . 04w 0% - - 4  ~ - ~ ow ~ 2 d c ~ - - a c ~ - - d c - -  
N (w) = ~ ~ + a ~ ~ 2 ~ atoO at aO" 

. 04w , 04w 
M (w) = ct oo----- ~ ~ ot2o02 

Onto 

O0 2 ' 

- - - - 2  ~ _ , t  ~ + 2d Ow O~w 
otoO ~ - od ~ + (t -k 2d) aO ~. . 
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